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1 Introduction

1.1 Modélisation (mathématique)

Nous partons d’un modèle physique, chimique, biologique, (financier), . . . et essayons de le

représenter sous forme d’expressions (équations) mathématiques.

Exemples

Désintégration d’un élément radioactif.

• Modèle physique : (assez résumé) Un atome quelconque d’un élément radioactif a autant de

chances de se désintégrer à un moment donné qu’un autre de la même espèce, le nombre de

désintégrations à un instant donné est proportionnel au nombre N d’atomes de même

espèce présents.

• Modèle mathématique : soit N(t) le nombre (ou, plutôt, la fraction rel ative) d’atomes

radioactifs de notre échantillon, nous avons N ′(t) = −λN(t), λ ∈ R
+.

Nous savons résoudre : N(t) = N(0)e−λt.

Deuxième loi de Newton

• Modèle physique (énoncé archäıque) : “Les changements qui arrivent dans le mouvement
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sont proportionnels à la force motrice ; et se font dans la ligne droite dans laquelle cette

force a été imprimée.”

• Modèle mathématique : ~x ′(t) = ~v, m~v ′ = ~F . En résumé, m~a = ~F .

Parfois la présentation est trompeuse :

(Faux) modèle d’écologie de Leonardo Pisano (Fibonacci)

• Modèle écologique : “Quelqu’un a déposé un couple de lapins dans un certain lieu, clos de

toutes parts, pour savoir combien de couples seraient issus de cette paire en une année, car

il est dans leur nature de générer un autre couple en un seul mois, et qu’ils enfantent dans

le second mois après leur naissance.” (et tous restent en vie, sinon...)

• (Vrai) modèle mathématique: obtenir la valeur de N12, sachant que Nn = Nn−1 +Nn−2 et

que N0 = N1 = 1.

Le but : construire un modèle (que ce soit physique, etc, puis mathématique) qui représente

l’essentiel du système étudié.

Constructions : de bas en haut (bottom-up), à partir de principes premiers (axiomes) ; de haut

en bas (top-bottom) à partir d’un modèle connu que l’on essaye d’ajuster.

Limitations et risques : le problème de la vache sphérique ou de l’ensemble vide, le problème du

modèle trop beau.
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1.2 Un cas bien réussi : les systèmes dynamiques

Ce sont des modèles mathématiques que l’on retrouve dans de nombreuses formulations pour

représenter l’évolution d’un système avec le temps. Ce temps peut correspondre à une variable

réelle (temps continu) o naturelle (temps discret). De nombreux systèmes sont modélisés de

manière satisfaisante, par exemple en physique, la mécanique (classique ou quantique), la

gravitation, la thérmodinamique, . . .

1.2.1 Formulation (temps continu, nombre fini de variables)

Nous avons vu :







~x ′ = v,

~v ′ = (1/m)~F ,
en général t ∈ R, ~x, ~f ∈ R

n, ~x ′ = ~f(~x, t) ⇔































x′

1 = f1(~x, t),

x′

2 = f2(~x, t),
...

x′

n = fn(~x, t).

• Les composantes de ~x correspondent aux différentes variables nécessaires à charactériser

l’état du système de façon unique. Par exemple pour un mobile classique, les trois

composantes de la position, les trois composantes de la vitesse.

• On distingue entre les systèmes non-autonomes et autonomes selon si ~f dépend ou non

explicitement du temps.
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• Tout système non-autonome peut se transformer en un autonome, en rajoutant une

variable, xn+1 qui aurait pour dérivée 1 pour tout temps. Mais (ça ne conduit à rien, ou

presque, et) en pratique l’analyse de ces systèmes se fait avec des outils différents.

• En principe on voudra résoudre les équations à partir d’une donnée initiale: ~x(t0) = ~x0

(problème de Cauchy) dans l’espace de configuration R
n × R, et obtenir la trajectoire dans

l’espace des phases Rn. En général on n’y arrive pas, mais . . .

• Au moins on peut assurer l’existence et l’unicité de la solution à partir de la donnée initiale,

dans un certain intervalle de temps, si le problème de Cauchy est bien posé : fi(~x, t) sont

continues en t et “lipschitziennes” en ~x. (Dans tout intervalle borné la distance entre deux

valeurs de la fonction est majorée par la distance entre les valeurs de la variable fois une

constante : l’existence de la dérivée n’est pas assurée mais tous les taux d’accroissements

sont bornés para la constante ∀s1, s2, |h(s1)− h(s2)| ≤ k|s1 − s2|.)

• Pour les systèmes autonomes l’analyse se fait principalement autour des solutions

constantes (points critiques) qui n’existent pas pour les systèmes non-autonomes.
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1.2.2 Étude des points critiques pour un système autonome

Pour chaque point critique on cherche a établir sa stabilité : quel est le comportement au

voisinage de ce point ?

• Développements limités de chaque fi centrés sur le point critique ~x0. Sous forme générale :

~x ′(t) = ~f(~x0) +M(~x− ~x0) + o(1) = M(~x− ~x0) + o(1),

M une matrice n× n constante.

• On résout le système linéaire associé : ~y ′ = M~y. [~y(t) = eMt~y0 !!]

• Importance des vecteurs propres.

• Importance des valeurs propres.

Parenthèse (
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Définition : étant donné une matrice carrée M on appelle vecteur propre ~v associé a la valeur

(scalaire) propre λ à tout vecteur non-nul (porquoi non-nul ?) tel que M~v = λ~v.

• Il n’existe pas de vecteur propre sans valeur propre, et vice-versa.

• Les directions correspondantes aux vecteurs propres sont vraiment spéciales.

• Tout vecteur propre nous donne une solution particulière de l’équation différentielle

~y(t) = a(t)~v =⇒ ~y ′(t) = a′(t)~v, M~y = λa(t)~v

et l’équation ~y ′ = M~y n’est plus vectorielle mais scalaire : a′(t) = λa(t).

• Mais . . .λ peut être “compliqué” : les valeurs propres sont les racines d’un certain

polynome associé a la matrice. En général λ ∈ C (!!!)

Pour ne pas ouvrir une deuxième parenthèse disont que la forme générale de a(t) est

eαt[c1 cos(βt) + c2 sin(βt)], c1, c2 constantes.

On appelle α la partie réelle de λ et β sa partie imaginaire :

• si α > 0, a(t) n’est pas borné quand t tends vers +∞,

• si α < 0, a(t) tends vers zéro quand t tends vers +∞,

• si α = 0, (et β 6= 0) a(t) est une fonction périodique de t.
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Parenthèse )

En conclusion, pour un point critique donné

• Si toutes les valeurs propres ont une partie réelle strictement négative, au voisinage du

point critique les solutions vont tendre vers celui-ci avec le temps. [point asymptotiquement

stable]

• Si il a au moins une valeur propre à partie rélle strictement positive, au voisinage du point

critique des solutions vont s’éloigner. [point instable]

• Dans toute autre situation on ne peut pas conclure sur la stabilité du point à partir de

l’approximation linéaire et une étude plus approfondie est nécéssaire.

Tout cela n’ait des travaux de Poincaréa et continue de nos jours avec multitude de questions

ouvertes, ne serait-ce qu’en relation avec la théorie du chaos (l’effet papillon).

aMémoire sur les courbes définies par une équation différentielle (I), H. Poincaré, Journal de Mathématiques

Pures et Appliquées Volume 7, pages 375–422, (1881) ; Mémoire sur les courbes définies par une équation

différentielle (II), H. Poincaré, Journal de Mathématiques Pures et Appliquées Volume 8, pages 251–296(1882)

; Sur les courbes définies par les équations différentielles (III), H. Poincaré, Journal de Mathématiques Pures et

Appliquées Volume 1, pages 167–244 (1885).
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2 Outils mathématiques

2.1 Motivation d’une “formulation fractionnaire”

Les systèmes complexes (verre, cristaux liquides, polymères, protéines, les êtres vivants, les

écosystèmes - humains inclus - etc.) se charactérisent par posséder un gran nombre d’éléments

qui interagissent entre eux. On y trouve, aussi, de multiples échelles et des phénomènes de

mémoire. Les matériaux viscoélastiques en sont un exemple.

Comme alternative aux modèles avec des dérivées “classiques”, on considère depuis déjà un bon

nombre d’années des modèles, dits “fractionnaires”, ayant des dérivées d’ordre non-entier.

2.2 Quelques détails historiques

Le 28 février 1695 a, Leibniz écrit une lettre à (Johann) Bernoulli en réponse à un

developpement en série (de “Taylor”)b proposé par Bernoulli pour la primitive d’une fonction.

Leibniz, qui était apparemment malade, fait une erreur qui comprends des dérivées d’ordre

négatif dans ces developpements.
aS. Dugowson, Les différentielles métaphysiques: histoire et philosophie de la généralisation de l’ordre de

dérivation, Ph.D. Dissertation, Université Paris Nord, 1994.
bÀ ce moment Taylor est agé de moins de dix ans. . .
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Une correspondence s’ensuit où tous deux discutent de différent détails. De L’Hôpital se joint à

eux et c’est dans une lettre qu’il reçoit de Leibniz, du 30 september 1695, où celui-ci introduit

des dérivées d’ordre non-entierc toujours dans le cadre des développements en série. Leibniz

finit par remarquer sur la possible interprétation : “comme toute paradoxe, celle-ci peut fournir

des résultats intéressants dans un futur.”

Si bien différents auteurs, tels que Euler en 1730, Lagrange en 1754 ou Fourier en 1822, se sont

penchés sur le sujet, il faut attendre qu’Abel, en 1823, l’utilise pour résoudre le problème de

l’intégrale tautochrone, pour que quelqu’un propose une formulation générale, ce que fait

Liouille en 1832.

À partir de ce moment une formulation por des intégrales d’ordre non-entier est bâtie avec des

contributions (entre autres) de Riemann, Laurent, Hadamard, Heaviside, Sonin, Grünwald,

Letnikov, etc., uses preferably the so called fractional integrals, because of their properties. À

partir de ces intégrales des dérivées d’ordres non-entiers sont définies.

De nos jours ce sont, dans beaucoup de cas, des applications d’ingénierie qui ont fait crôıtre

l’intéret, suivi de l’analyse mathématique de leurs propriétés. On trouve maintenant plusieurs

définitions que l’on applique, par exemple, en hydrodynamique pour décrire des fluides

viscoélastiques, ou dans des processus de diffusion anormale, ou de contrôle de modèles avec

mémoire, etc.

cplus exactement, des différentielles d’ordre non-entier
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2.3 Fonction Gamma de Euler et fonctions de Mittag-Leffler

La fonction gamma (majuscule) de Euler, Γ (notation, par contre, due à Legendre), peut être

considérée comme une généralisation de la factorielle. Elle est définie pour z ∈ R
+ d par :

Γ(z) :=

∫

∞

0

sz−1e−sds,

et satisfait, entre autres les propriétés :

Γ(1) = 1, Γ(z + 1) = zΓ(z),

d’où l’on déduit

Γ(n+ 1) = n!, n ∈ N.

dEn général z ∈ C avec Re(z) > 0 mais, bon, restons réels.
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Figure 1: Représentations de la fonction Γ de Euler, pour des valeurs positives, et de la factorielle
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De son côté, les fonctions de Mittag-Leffler généralisent la fonction exponentielle. Elles sont

définies par :

Eα(x) =

∞
∑

k=0

xk

Γ(αk + 1)
, (α > 0), E1(x) = ex,

Eα,β(x) =

∞
∑

k=0

xk

Γ(αk + β)
, (α, β > 0), Eα,1 = Eα,

El
α,β(x) =

∞
∑

k=0

(k + l)!

l!Γ(αk + β)

xk

k!
, (α, β > 0; l ∈ N), E0

α,β = Eα,β .

Ces exponentielles généralisées, avec des arguments négatifs, Eα(−kt), k > 0, ont un

comportement semblable à celui de l’exponentielle pour 0 < α < 1, mais pour 1 < α < 2 elles

présentent des oscillations amorties.
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Figure 2: Eα(−t) por quelques valeurs de α, avec α ∈ (0, 1) ou α ∈ (1, 2).
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2.4 Intégrales fractionnaires

Il est possible d’imaginer une dérivée d’ordre non-entier à partir des transfomées de Fourier ou

de Laplace :

• Si F(f (n))(x) = (2πiκ)nF(f)(κ), à quoi correspond F−1
(

(2πiκ)αF(f)(κ)
)

, quand α 6∈ N?

• Si L
(

f (n)(x)
)

= pn(Lf)(p)−
n
∑

k=1

pn−kf (k−1)(0), à quoi correspond L−1
(

pα(Lf)(p)
)

, α 6∈ N?

Cependant on part d’une autre aproche, en généralisant un idée bien différente.

Formule de l’intégrale itérée de Cauchy

De la même façon que l’on peut penser à des dérivées succesives pour une fonction :

f(x), Df(x) = f ′(x), D2f(x) = f ′′(x), . . . , Dnf(x) = f (n)(x),

on peut envisager itérer l’intégration :

If(x) =
∫ x

a

f(t) dt, I2f(x) =

∫ x

a

dx1

∫ x1

a

f(t) dt, I3f(x) =

∫ x

a

dx1

∫ x1

a

dx2

∫ x3

a

f(t) dt, . . .
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La formule de Cauchy représente l’iteration d’n intégrations succéssives avec unique integrale

convolutiona :

Inf(x) =

∫ x

a

dx1

∫ x1

a

dx2 . . .

∫ xn−1

a

f(t) dt =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t) dt.

Étant donnée la généralisation de la factorielle, l’intégrale fractionnaire de Riemann-Liouville

d’ordre α > 0 est définie commeb :

Iαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t) dt, x ∈]a, b[.

Ce sont des opérateurs non locaux ayant les suivantes propriétés :

• Les intégrales son bien définies si f ∈ L1[a, b].

• Quand α ∈ N on retrouve le cas “classique”.

• Loi des indices (demi-groupe) : soient f ∈ L1[a, b] et α, β > 0, alors, p.p. en ]a, b[,

(Iαa+I
β
a+f)(x) = (Iα+β

a+ f)(x).

aJe vous invite à le démontrer (par récurrence sur n).
bA.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations,

Elsevier, Amsterdam 2006.
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• L’intégrale d’une puissance est une puissance : soient β > 0 et α > 0, alors

Iαa+(x− a)β−1 =
Γ(β)

Γ(β + α)
(x− a)β+α−1, p.p.

2.5 Dérivée de Riemann-Liouville

On la définie comme :

(Dα
a+f)(x) :=

(

DnIn−α
a+ f

)

(x) =
1

Γ(n− α)

dn

dxn

∫ x

a

(x− t)n−α−1f(t)dt,

avec n tel que n− 1 < α ≤ n, n ∈ N (notation: n = ⌈α⌉) et où D représente la dérivée usuelle.

Si α = n ∈ N, on retrouve l’expression usuelle qui correspond. Mais en général la dérivée

correspond à un operateur non local.

Quelques propriétés

• La dérivée est bien définie pour des fonctions f ∈ ACn[a, b] : Cn−1[a, b], f (n−1) ∈ AC[a, b].

continue ⊃ lipschitzienne ⊃ Absolument Continue ⊃ dérivable.

• Limites aux ordres naturels :

lim
α→n

(Dα
a+f)(x) = f (n)(x).
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• Dérivée d’une puissance : soient β > 0 et α > 0, alors

Dα
a+(x− a)β−1 =

Γ(β)

Γ(β − α)
(x− a)β−α−1.

• Dérivée d’une constante : soit 0 < α < 1, alors

Dα
a+1 =

(x− a)−α

Γ(1− α)
.

Par ailleurs :

Dα
a+y(x) = 0 ⇐⇒ y(x) =

n
∑

j=1

cj(x− a)α−j ,

avec cj , dj des constantes arbitraires.

• Loies des indices : soient f ∈ L1[a, b], α, β > 0, alors p.p.

⋆ (Dα
a+D

β
a+f)(x) = (Dα+β

a+ f)(x)−
m
∑

j=1

(Dβ−j
a+ f)(a+)

(x− a)−j−α

Γ(1− j − α)
, ⌈β⌉ = m.

⋆ (Dα
a+I

α
a+f)(x) = f(x),

⋆ (Iαa+D
α
a+f)(x) = f(x)−

n
∑

j=1

f (n−j)(a)

Γ(α− j + 1)
(x− a)α−j, n = ⌈α⌉.

⋆ (Dβ
a+I

α
a+f)(x) = (Iα−β

a+ f)(x), si α ≥ β, (Dβ
a+I

α
a+f)(x) = (Dβ−α

a+ f)(x), si α ≤ β.

S. Jiménez, Le calcul fractionnaire comme outil de modélisation 3/14/2025 2 Introduction : systèmes dynamiques 19/38



• Problème de Cauchy avec une dérivée de Riemann-Liouville : la solution de

Dα
a+x(t) = f [t, x(t)], α > 0, t > a,

avec

Dα−k
a+ x(a+) = bk, bk ∈ R, k = 0, 1, . . . , n− 1, n = ⌈α⌉,

(

Dα−k
a+ x(a+) := lim

t→a+
Dα−k

a+ x(t)
)

existe et est unique avec les mêmes hypothèses que pour le cas d’ordre entier. Mais...

• les conditions sont bizarres,

• quel serait le space des phases ?

2.6 Dérivée de Caputo

Pour avoir un problème de Cauchy avec des conditions ayant des dérivées d’ordres entiers on

peut avoir recours à la dérivée de Caputo définie par :

(cDα
a+f)(x) :=

(

In−α
a+ Dnf

)

(x),=
1

Γ(n− α)

∫ x

a

(x− t)n−α−1 dnf(t)

dtn
dt,

Cela correspond a intervertir la dérivation et l’intégration dans la formule de R-L. La fonction f

est maintenant plus régulière puisque sa derivée n-ième doit exister.

S. Jiménez, Le calcul fractionnaire comme outil de modélisation 3/14/2025 2 Introduction : systèmes dynamiques 20/38



Quelques propriétés

• Relation entre les dérivées de R-L et C :

(Dα
a+f)(x) = (cDα

a+f)(x) +
n−1
∑

j=0

f (j)(a)

Γ(1 + j − α)
(x− a)j−α.

• Derivée d’une constante :

(cDα
a+1) = 0.

• Soient α > 0, ⌈α⌉ = n et k ∈ [[1, n− 1]], alors

cDα
a+(x− a)k = 0.

• Problème de Cauchy avec une dérivée de Caputo : la solution de

Dα
a+x(t) = f [t, x(t)], α > 0, t > a,

avec

Dk
a+x(a

+) = bk, bk ∈ R, k = 0, 1, . . . , n− 1, n = ⌈α⌉,
existe et est unique avec les mêmes hypothèses que pour le cas d’ordre entier.

• Fonctions (vecteurs) propres : soient α > 0, λ ∈ C,

Dα
a+Eα(λ(t− a)α) = λEα(λ(t− a)α).
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Figure 3: Fonctions propres de la dérivée de Caputo, λ = −1, Eα(−tα).
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2.7 Dérivée de Grünwald-Letnikov

C’est une aproche bien différente :

f ′(x) = lim
h→0

f(x)− f(x− h)

h
= lim

h→0

1

h

(

f(x)− f(x− h)
)

,

f ′′(x) = lim
h→0

f ′(x)− f ′(x− h)

h
lim
h→0

f(x)−f(x−h)
h − f(x−h)−f(x−2h)

h

h

= lim
h→0

1

h2

(

f(x)− 2f(x− h) + f(x− 2h)
)

,

f (3)(x) = lim
h→0

1

h3

(

f(x)− 3f(x− h) + 3f(x− 2h)− f(x− 3h)
)

,

f (4)(x) = lim
h→0

1

h4

(

f(x)− 4f(x− h) + 6f(x− 2h)− 4f(x− 3h) + f(x− 4h)
)

,

etc.

Quels sont ces coéfficients ?
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La formule générale est bien :

f (n)(x) = lim
h→0

1

hn

n
∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

f(x− ℓh), n ∈ N.

Extension fractionnaire : étant donné que
(

n

ℓ

)

=
n!

ℓ!(n− ℓ)!

on choisi :
dα

dxα
f(x) = lim

h→0

1

hα

n
∑

ℓ=0

(−1)ℓ
Γ(α+ 1)

ℓ!Γ(α+ 1− ℓ)
f(x− ℓh), α ∈ R

+.

Le problème : n, la valeur supérieure de la somme, n’as plus aucun sens. Si on considère

x ∈ [a, b] (et b pourrait même être +∞), on peut écrire

h =
x− a

n
=⇒ n =

x− a

h
, h > 0,

et on substitue n par la partie entière de cette valeur. On défini, finalement :

dα

dxα
f(x) = lim

h→0+

1

hα

[ x−a

h ]
∑

ℓ=0

(−1)ℓ
Γ(α+ 1)

ℓ!Γ(α+ 1− ℓ)
f(x− ℓh), α ∈ R

+.

Dans la pratique, la limite en h est tronquée et une petite valeur de h (suffisamment petite) est

choisie pour obtenir une approximation.
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3 FODE models

There have been bottom-up generated models, arising from actual applications. For instance in

control or in the study of visco-elastic media [3]. There have also been top-down generated

models, trying to see what consequences can be obtained “fractionalizing” a given integer-order

ODE, with different success.

3.1 Some tools

The fractional derivatives are linear operators. This allows to preserve some interesting features

of the integer-order case (especially true in the case of the Caputo Derivative).

• “Fractional Picard Theorem”: existence and unicity of the solution for the ivp

ode:

dx

dt
= f(t, x), fode:

c

rl
Dαx = f(t, x), if f is continuous in t and Lipschitz in x. (1)

• For linear equations the superposition principle holds: linear combinations of solutions are

solutions.

• Laplace and Fourier Transform can be applied.
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• Linear, homogeneous, equations with constant coefficients have as space of solutions a

vector space spanned by the eigenfunctions of the differential operator:

ode:

d~x

dt
= M~x, fode:

cDα~x = M~x, ~x(t) =
∑

k

ckfk(t)~vk. (2)

• Similarly if we add a constant: the solution is the general solution of the homogeneous

equations plus a particular solution of the inhomogenous system:

ode:

d~x

dt
= M~x+ ~c, fode:

cDα~x = M~x+ ~c, ~x(t) = ~fp(t) +
∑

k

ckfk(t)~vk. (3)

• Linear stability analysis of hyperbolic critical points is valid (first Lyapunov method [4]):

arg ∈ [−π, π)

ode: ∀k,Re(λk) < 0 ⇐⇒ ∀k, |arg(λk)| > π/2 (4)

fode: ∀k, |arg(λk)| > απ/2, α ∈ (0, 1) (5)

• Nonlinear stability analysis by the second Lyapunov method exists (Lyapunov function[5]):

ode: Strong stability, fode: “Mittag-Leffler” stability (implies strong stability).

• Critical points correspond to constant solutions (Caputo):

ode:

d~x

dt
= ~f(~x), fode:

cDα~x = ~f(~x), ~f(~x) =~0. (6)
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3.2 Drawbaks

Some properties, many of which are everyday tools, do not transfer to the fractional models.

• The Leibniz rule is not valid.

• The chain rule is not valid.

• The eigenfunctions of fractional derivatives are not orthogonal (thus, no Fourier Series).

• Higher order equations do not correspond necessarily to a system of unique order.

• What is now the phase space?
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3.3 An example: a visco-elastic linear model

We consider a thin plate of surface smoving vertically in a fluid of density

ρ, with viscosity µ, attached to a spring with constant k, subject to an

external force f(t). The behaviour of the displacement x(t) is modeled

by the fractionally damped equation:

ẍ+ a cDαx+ kx = f(t) (7)

with a some constant that depends on µ, ρ and s.

This linear system can be (formally) solved by the Laplace transform,

depending on the initial conditions x(0), ẋ(0).

Let be L
(

x(t)
)

= Y (p), L
(

f(t)
)

= F (p):

Y (p) =
F (p) + (p+ apα−1)x(0) + (1 + apα−2)ẋ(0)

p2 + apα + k
.

In the cases where 2/α is rational, with zero initial conditions, it can be formulated, by

congruent decomposition as a spectral problem for some basic operator cDp/q.

S. Jiménez, Le calcul fractionnaire comme outil de modélisation 3/14/2025 3 Some FODE models 28/38



Application: α = 3/2, x(0) = ẋ(0) = 0.

Since we have zero initial conditions we have:

cD
1/2

(cD1/2x) = cD2/2x, etc.

We define auxiliary variables xk such that x0 = x and express the equation as






































cD1/2x0(t) = x1(t),

cD1/2x1(t) = x2(t),

cD1/2x2(t) = x3(t),

cD1/2x3(t) = −kx0(t)− ax3(t) + f(t),

xk(0) = 0, k = 0, 1, 2, 3.

⇐⇒ cD1/2~x = M~x+ ~v(t).

M =









0 1 0 0

0 0 1 0

0 0 0 1

−k 0 0 −a









, ~x =









x0

x1

x2

x3









, ~v =









0

0

0

f(t)









.

We then diagonalize M , uncouple the equations representing ~x in a basis of eigenvectors

(complex), solve and, finally, transform back to obtain x(t) = x0(t).
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Or we can solve numerically: (the periodic limit cycle is not a solution)
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Figure 4: a = 3, k = 1, f(t) = 8 cos(t)
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Second example: Bagley-Torvik Equation

It corresponds to the i.v.p. with Caputo fractional derivative of order 3/2 given by:






D2x(t) + 2D3/2x(t)− 3x(t) = sin(t),

x(0) = x′(0) = 0.

we can solve it, as the previous example, by congruent decomposition. The linear system is, in

this case:

D1/2~x(t) = M~x+ ~c,

M =









0 1 0 0

0 0 1 0

0 0 0 1

3 0 0 −2









, ~x =









x0

x1

x2

x3









, ~c =









0

0

0

sin(t)









.

The eigenvalues of M are:

λ1 = 1, λ2 = −1− 3
√
2, λ3,4 = −1 +

3
√
2

2
± i

√
3

3
√
2

2
.

In the “classical” case (α = 1) the solution is unbounded:

x(t) =
1

8
et − 1

40
e−3t − 1

10
cos(t)− 1

5
sin(t).

But for α = 3/2 we obtain a periodic curve as the limit.
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Figure 5: solution of the Bagley-Torvik Problem for α = 1 and for α = 3/2.
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3.4 An example: a visco-elastic nonlinear model

Figure 6: Guckenheimer & Holmes [6], experimental

setup of the Duffing equation.

The equation

ẍ+ γcDαx− x+ x3 = f0 cos(ωt) (8)

is a “visco-elastic-damped” counterpart

of the Duffing equation:

ẍ+ γẋ− x+ x3 = f0 cos(ωt). (9)

It corresponds to the same device but

inmersed in a visco-elastic fluid. With a

Cauchy problem x(0) = x0, ẋ(0) = v0,

it has a unique solution starting at time

t0 = 0.
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Figure 7: The strange attractor of the integer-oder (left) and of the fractional-order Duffing

equation (right).

Property

Let us consider, for instance, the following initial value problem:






ẍ+ γ
(

cDα
t+
1

x
)

t
(t)− F (x) = f0 cos(ωt),

x(t1) = a , ẋ(t1) = b .
(10)
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We use:

(

cDα
t+
1

x
)

t
(t) =

1

Γ(n− α)

∫ t

t1

∂n

∂τn x(τ)

(t− τ)α+1−n
dτ

=
1

Γ(n− α)

∫ s

0

∂n

∂σn x(t1 + σ)

(s− σ)α+1−n
dσ [t = t1 + s, τ = σ + t1]

= (cDα
0+x)s (t1 + s) = (cDα

0+y)s (s), [y(s) = x(t1 + s)] (11)

and we rewrite (10) as






y′′ + γ
(

cDα
0+y

)

s
(s)− F (y) = f0 cos(ωs+ φ0), φ0 = ωt1 ,

y(0) = a , y′(0) = b .
(12)

where the prime stands for derivation with respect to s. We obtain the same system as (10) but

at t = 0 and with an initial time-phase. If, for instance, t1 = 2π/ω, a = x0 and b = v0, (12)

becomes (8).
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Conclusions

• All solutions can be reached from t0 = 0 We may consider that any solution that starts at

a later time is, in fact, a solution that started at t0 = 0 but with a phase.

• We still don’t know. . . We still don’t know how to prolong a given solution from the

“state” it is at a given time.

• But. . . Our Cauchy problem, for any solution, can be stated at time t0 = 0 with three

values: x0, v0 and φ0.

• 3-dim space We conclude that our phase space has three dimensions: R× R× [0, 2π).

• 2-dim in practice for many purposes Just as for a noautonomous “classical” system. Since

the initial phase is a constant, it is not relevant for many aspects when analysing the

solutions.

• So. . . What is the phase space, in practice, for a fractional system? The space of initial

conditions or the space of conditions to prolong a solutions?

See for instance [7, 8].
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Merci de votre attention !


