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1 Introduction

1.1 Modélisation (mathématique)

Nous partons d’un modele physique, chimique, biologique, (financier), ... et essayons de le

représenter sous forme d’expressions (équations) mathématiques.

Exemples

m Désintégration d’un élément radioactif.

e Modele physique : (assez résumé) Un atome quelconque d’un élément radioactif a autant de
chances de se désintégrer a un moment donné qu’'un autre de la méme espece, le nombre de
désintégrations a un instant donné est proportionnel au nombre N d’atomes de méme
espece présents.

e Modele mathématique : soit N(t) le nombre (ou, plutot, la fraction rel ative) d’atomes
radioactifs de notre échantillon, nous avons N'(t) = —AN(t), A € RT.

Nous savons résoudre : N(t) = N(0)e™ .

m Deuxieme loi de Newton

e Modele physique (énoncé archaique) : “Les changements qui arrivent dans le mouvement

S. Jiménez, Le calcul fractionnaire comme outil de modélisation  3/14/2025 1 Introduction : systémes dynamiques  3/38



sont proportionnels a la force motrice ; et se font dans la ligne droite dans laquelle cette
force a été imprimée.”

—

v, mv’ =F. En résumé, ma =F.

e Modele mathématique : Z'(t)

Parfois la présentation est trompeuse :

m (Faux) modele d’écologie de Leonardo Pisano (Fibonacci)

e Modele écologique : “Quelqu’un a déposé un couple de lapins dans un certain lieu, clos de
toutes parts, pour savoir combien de couples seraient issus de cette paire en une année, car
il est dans leur nature de générer un autre couple en un seul mois, et qu’ils enfantent dans

le second mois apres leur naissance.” (et tous restent en vie, sinon...)

e (Vrai) modele mathématique: obtenir la valeur de Nis, sachant que N,, = N,,_1 + N, _o et
que NO = N1 =1.

Le but : construire un modele (que ce soit physique, etc, puis mathématique) qui représente

I’essentiel du systeme étudié.

Constructions : de bas en haut (bottom-up), a partir de principes premiers (axiomes) ; de haut

en bas (top-bottom) a partir d’'un modele connu que 'on essaye d’ajuster.

Limitations et risques : le probleme de la vache sphérique ou de I’ensemble vide, le probleme du

modele trop beau.

S. Jiménez, Le calcul fractionnaire comme outil de modélisation  3/14/2025 1 Introduction : systémes dynamiques  4/38



1.2 Un cas bien réussi : les systemes dynamiques

Ce sont des modeles mathématiques que ’on retrouve dans de nombreuses formulations pour

représenter 1’évolution d’un systeme avec le temps. Ce temps peut correspondre a une variable

réelle (temps continu) o naturelle (temps discret). De nombreux systémes sont modélisés de
maniere satisfaisante, par exemple en physique, la mécanique (classique ou quantique), la

gravitation, la thérmodinamique, ...

1.2.1 Formulation (temps continu, nombre fini de variables)

Nous avons vu :

:’U)

= (1/m)F,

en général t € R, 7, f € R", 7'

||
&
=
(x

Lz, = fn(Z, ).

e Les composantes de T correspondent aux différentes variables nécessaires a charactériser

I’état du systeme de fagcon unique. Par exemple pour un mobile classique, les trois

composantes de la position, les trois composantes de la vitesse.

e On distingue entre les systemes non-autonomes et autonomes selon si f dépend ou non

explicitement du temps.
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e Tout systeme non-autonome peut se transformer en un autonome, en rajoutant une
variable, x, 11 qui aurait pour dérivée 1 pour tout temps. Mais (¢a ne conduit a rien, ou

presque, et) en pratique ’analyse de ces systémes se fait avec des outils différents.

e En principe on voudra résoudre les équations a partir d’'une donnée initiale: Z(tg) = Zo
(probleme de Cauchy) dans ’espace de configuration R™ x R, et obtenir la trajectoire dans

l’espace des phases R™. En général on n’y arrive pas, mais ...

e Au moins on peut assurer I'existence et 'unicité de la solution a partir de la donnée initiale,
dans un certain intervalle de temps, si le probleme de Cauchy est bien posé : f;(Z,t) sont
continues en t et “lipschitziennes” en Z. (Dans tout intervalle borné la distance entre deux
valeurs de la fonction est majorée par la distance entre les valeurs de la variable fois une
constante : 1'existence de la dérivée n’est pas assurée mais tous les taux d’accroissements

sont bornés para la constante Vsy, s, |h(s1) — h(s2)| < k|s1 — s2].)

e Pour les systemes autonomes ’analyse se fait principalement autour des solutions

constantes (points critiques) qui n’existent pas pour les systémes non-autonomes.
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1.2.2 Etude des points critiques pour un systéeme autonome
m Pour chaque point critique on cherche a établir sa stabilité : quel est le comportement au
voisinage de ce point ?

e Développements limités de chaque f; centrés sur le point critique Zp. Sous forme générale

—

T'(t) = f(Zo) + M(Z — Zo) + o(1) = M(Z — o) + o(1),
M une matrice n X n constante.
e On résout le systeme linéaire associé : i’ = My, [57(t) = eMtgy 1]
e Importance des vecteurs propres.

e Importance des valeurs propres.

Parenthese (
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Définition : étant donné une matrice carrée M on appelle vecteur propre ¢ associé a la valeur

(scalaire) propre A a tout vecteur non-nul (porquoi non-nul 7) tel que My = Av.
e Il n’existe pas de vecteur propre sans valeur propre, et vice-versa.
e Les directions correspondantes aux vecteurs propres sont vraiment spéciales.

e Tout vecteur propre nous donne une solution particuliere de ’équation différentielle
y(t) =a(t)0 = y'(t) =d'(t)v,  My=Aa(t)v
et ’équation ' = My n’est plus vectorielle mais scalaire : a’(t) = Aa(t).

e Mais ...\ peut étre “compliqué” : les valeurs propres sont les racines d’un certain

polynome associé a la matrice. En général A € C (!!!)
Pour ne pas ouvrir une deuxieme parenthese disont que la forme générale de a(t) est
e [cy cos(Bt) + cy sin(St)], 1, Co constantes.
On appelle a la partie réelle de A et § sa partie imaginaire :
e si o >0, a(t) n’est pas borné quand ¢ tends vers o0,
e si a <0, a(t) tends vers zéro quand ¢ tends vers +oo,

e sia=0, (et B#0) a(t) est une fonction périodique de t.
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Parenthese )

En conclusion, pour un point critique donné

e Si toutes les valeurs propres ont une partie réelle strictement négative, au voisinage du
point critique les solutions vont tendre vers celui-ci avec le temps. [point asymptotiquement
stable]

e Si il a au moins une valeur propre a partie rélle strictement positive, au voisinage du point

critique des solutions vont s’éloigner. [point instable]

e Dans toute autre situation on ne peut pas conclure sur la stabilité du point a partir de

I’approximation linéaire et une étude plus approfondie est nécéssaire.

Tout cela n’ait des travaux de Poincaré® et continue de nos jours avec multitude de questions

ouvertes, ne serait-ce qu’en relation avec la théorie du chaos (I’effet papillon).

@Mémoire sur les courbes définies par une équation différentielle (I), H. Poincaré, Journal de Mathématiques
Pures et Appliquées Volume 7, pages 375422, (1881) ; Mémoire sur les courbes définies par une équation
différentielle (IT), H. Poincaré, Journal de Mathématiques Pures et Appliquées Volume 8, pages 251-296(1882)
; Sur les courbes définies par les équations différentielles (III), H. Poincaré, Journal de Mathématiques Pures et
Appliquées Volume 1, pages 167-244 (1885).
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2  Outils mathématiques

2.1 Motivation d’une “formulation fractionnaire”

Les systemes complexes (verre, cristaux liquides, polymeres, protéines, les étres vivants, les
écosystemes - humains inclus - etc.) se charactérisent par posséder un gran nombre d’éléments
qui interagissent entre eux. On y trouve, aussi, de multiples échelles et des phénomenes de

mémoire. Les matériaux viscoélastiques en sont un exemple.

Comme alternative aux modeles avec des dérivées “classiques”, on considere depuis déja un bon

nombre d’années des modeles, dits “fractionnaires”, ayant des dérivées d’ordre non-entier.

2.2 Quelques détails historiques

Le 28 février 1695 #, Leibniz écrit une lettre a (Johann) Bernoulli en réponse a un
developpement en série (de “Taylor” )P proposé par Bernoulli pour la primitive d'une fonction.
Leibniz, qui était apparemment malade, fait une erreur qui comprends des dérivées d’ordre

négatif dans ces developpements.

aS. Dugowson, Les différentielles métaphysiques: histoire et philosophie de la généralisation de [’ordre de
dérivation, Ph.D. Dissertation, Université Paris Nord, 1994.
PA ce moment Taylor est agé de moins de dix ans. ..
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Une correspondence s’ensuit ou tous deux discutent de différent détails. De L’Hopital se joint a
eux et c’est dans une lettre qu’il recoit de Leibniz, du 30 september 1695, ot celui-ci introduit
des dérivées d’ordre non-entier® toujours dans le cadre des développements en série. Leibniz
finit par remarquer sur la possible interprétation : “comme toute paradoxe, celle-ci peut fournir

des résultats intéressants dans un futur.”

Si bien différents auteurs, tels que Euler en 1730, Lagrange en 1754 ou Fourier en 1822, se sont
penchés sur le sujet, il faut attendre qu’Abel, en 1823, 'utilise pour résoudre le probleme de
I'intégrale tautochrone, pour que quelqu’un propose une formulation générale, ce que fait
Liouille en 1832.

A partir de ce moment une formulation por des intégrales d’ordre non-entier est batie avec des
contributions (entre autres) de Riemann, Laurent, Hadamard, Heaviside, Sonin, Griinwald,
Letnikov, etc., uses preferably the so called fractional integrals, because of their properties. A

partir de ces intégrales des dérivées d’ordres non-entiers sont définies.

De nos jours ce sont, dans beaucoup de cas, des applications d’ingénierie qui ont fait croitre
I’intéret, suivi de ’analyse mathématique de leurs propriétés. On trouve maintenant plusieurs
définitions que I’on applique, par exemple, en hydrodynamique pour décrire des fluides
viscoélastiques, ou dans des processus de diffusion anormale, ou de controle de modeles avec

mémoire, etc.

°plus exactement, des différentielles d’ordre non-entier
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2.3 Fonction Gamma de Euler et fonctions de Mittag-Leftler

La fonction gamma (majuscule) de Euler, I' (notation, par contre, due a Legendre), peut étre

considérée comme une généralisation de la factorielle. Elle est définie pour z € Rt 4 par :

['(2) ::/ s~ te~5ds,
0

et satisfait, entre autres les propriétés :

d’ou I'on déduit

dEn général z € C avec Re(z) > 0 mais, bon, restons réels.
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Figure 1: Représentations de la fonction I' de Euler, pour des valeurs positives, et de la factorielle
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De son coté, les fonctions de Mittag-Leffler généralisent la fonction exponentielle. Elles sont
définies par :

o k

44 €T
Eo(2) = ZF(OAI{'—I—]_)’ (> 0), Ey(z) =¢€”,
k=0
=3 = (0,8 0)
Eoglx) = , a, 3> 0), Eo1=FE,,
P c— I'(ak + p)
= (k4! 2F
l .
Bl 4z szrak+5 7 (@B>01EN), ES 3= Eag.

Ces exponentielles généralisées, avec des arguments négatifs, F,(—kt), k > 0, ont un
comportement semblable a celui de ’exponentielle pour 0 < a < 1, mais pour 1 < a < 2 elles

présentent des oscillations amorties.
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Figure 2: E,(—t) por quelques valeurs de «, avec o € (0,1) ou « € (1,2).
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2.4 Intégrales fractionnaires

Il est possible d’'imaginer une dérivée d’ordre non-entier a partir des transfomées de Fourier ou

de Laplace :
o Si F(f™)(x) = (2mir)"F(f)(x), & quoi correspond F~* ((27T7j/1)0‘.7:(f)(/1)), quand « ¢ N?

p"k FE=1(0), & quoi correspond £ (po‘([,f)(p)), a & N?

M:

o SiL(fM(x)) =

k=1
Cependant on part d’une autre aproche, en généralisant un idée bien différente.
Formule de l’'intégrale itérée de Cauchy

De la méme facon que 'on peut penser a des dérivées succesives pour une fonction :

f(z), Df(z)=f'(z), D*f(z)=f"(x),..., D"f(z)=f" (),

on peut envisager itérer l'intégration :

— /a xf(t) dt, T*f( / dx; / f(t)ydt, If(z) = /a xdxl /a xlde /a xsf(t) dt
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La formule de Cauchy représente l'iteration d’n intégrations succéssives avec unique integrale

convolution® :

" f(z) :/: dary / dazs .../jnlf(t) dt ﬁ/j(x—t)”lf(t) dt.

Etant donnée la généralisation de la factorielle, I'intégrale fractionnaire de Riemann-Liouville

d’ordre o > 0 est définie commeP :

o, f(x) = ﬁ / =0 () dt, @ elab]

Ce sont des opérateurs non locaux ayant les suivantes propriétés :
e Les intégrales son bien définies si f € L'[a, b].
e Quand o € N on retrouve le cas “classique”.

e Loi des indices (demi-groupe) : soient f € L[a,b] et o, 3 > 0, alors, p.p. en ]a, b],

(18,12, F) (@) = (ISP ) ().

aJe vous invite a le démontrer (par récurrence sur n).
PA.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations,
Elsevier, Amsterdam 2006.
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e L’intégrale d’'une puissance est une puissance : soient 3 > 0 et a > 0, alors

12 (e -y~ = L)

_ \BHa—1
(6+04) (ZE CL) * y P-P-

2.5 Dérivée de Riemann-Liouville

On la définie comme :

(Dgy f)(x) == (D I f) (x) = - 1

n—a) dx"

[ =it

avec n tel que n — 1 < a <n, n € N (notation: n = [«]) et o D représente la dérivée usuelle.
Si o =n € N, on retrouve ’expression usuelle qui correspond. Mais en général la dérivée

correspond a un operateur non local.

Quelques propriétés
e La dérivée est bien définie pour des fonctions f € AC"[a,b] : C" Ya,b], f*~V) € AC]a,b].
continue D lipschitzienne O Absolument Continue D dérivable.

e Limites aux ordres naturels :

lim (Dg, f)(z) = [ (x).

a—n
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e Dérivée d’une puissance : soient 5 > 0 et a > 0, alors
o _ I'(B) e
DY (v —a)f = ——— (z—a) L

e Dérivée d’une constante : soit 0 < a < 1, alors

(r —a)™

D% 1= :
at 'l —«)
Par ailleurs :
D y(x) =0 <= y(x) chx—a
71=1

avec cj,d; des constantes arbitraires.

e Loies des indices : soient f € Ll[a,b], o, 8 > 0, alors p.p.

« (D2,DE, 1)(e) = (D5 D) - S0 Dlan) T g =

F(l—]—oz)’
w (D I3y () = f(o),

« (I3, D5, Na 2_;F ]

x (Dydg (@) = g7 (), sta =8, (D g @) = (Da"f)(@), sia < 8.
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e Probleme de Cauchy avec une dérivée de Riemann-Liouville : la solution de
Dg—l—x(t):f[tax(t)]a OA>O, t>a’7
avec
Dg‘;kx(cﬁ) = by, by €R, k=0,1,...,n—1, n=|al,
(Dg‘;kx(cﬁ) = lim Dg‘;kx(t»

t—aTt

existe et est unique avec les mémes hypotheses que pour le cas d’ordre entier. Mais...
e les conditions sont bizarres,

e quel serait le space des phases ?

2.6 Dérivée de Caputo

Pour avoir un probleme de Cauchy avec des conditions ayant des dérivées d’ordres entiers on

peut avoir recours a la dérivée de Caputo définie par :
_ 1 v —a—1 4" f(?)
CDa .— ([P pn - = _ f)yno 1—dt
(D2 @) = (15D @)= jo—as [ =0 i
Cela correspond a intervertir la dérivation et I'intégration dans la formule de R-L. La fonction f

est maintenant plus réguliere puisque sa derivée n-ieme doit exister.
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Quelques propriétés

e Relation entre les dérivées de R-L et C :

D¢ — CDa . j—a.
( a-+ )(l‘) ( a-+t+ )(l‘) +jz:; F(l _|_] —Of) (I‘ a’)
e Derivée d’une constante :
(CDngl) -

e Soient a > 0, [a] =n et k € [1,n — 1], alors
DY, (x —a)¥ =0.
e Probleme de Cauchy avec une dérivée de Caputo : la solution de
Dy x(t) = flt,z(t)], a>0,t>a,

avec
D§+x(a+):bk, b € R, k=0,1,....n—1, n=[a],

existe et est unique avec les mémes hypotheses que pour le cas d’ordre entier.
e Fonctions (vecteurs) propres : soient a > 0, A € C,
Dg  Eq(A(t —a)®) = AEL(A(t —a)?).
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Figure 3: Fonctions propres de la dérivée de Caputo, A = —1, E,(—t%).
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2.7 Dérivée de Grunwald-Letnikov

C’est une aproche bien différente :

PR =@ 1) i (@) — £z — 1),

/ _ .
(@)= lim h dim, >
f(x)—f(x—h) f(x—h)—f(x—2h)

_ fl@) = flz—h) flo=h) _ .

1" _
PO=im ™ h
, 1
~ lim - (f(2) = 2f (= h) + f(z = 2m)),

FO @) = tim oo (f(x) ~ 3z~ h) +3f(x — 2h) — f(z —3h)).

h—0 h3
FO () = Jim o ()~ Afr—h) + 67 (x — 2h) — 4f(x — 30) + f(x — 4h) ),

etc.

Quels sont ces coéfficients 7
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La formule générale est bien :

f(”)(:L‘) — lim 1 Z(—l)e (ZJ) f(x —£h), néeN.

h—0 h"
=0

(S

Extension fractionnaire : étant donné que

on choisi :
n

a’ .1 ['(a+1)
e d (@ = lim 2 ) (-1 — R
dze ! @) ;igﬁivxgég( ),aI(C¥+_1__£)fo th), o€

Le probleme : n, la valeur supérieure de la somme, n’as plus aucun sens. Si on considere

x € [a,b] (et b pourrait méme étre +00), on peut écrire

X — a X — a
> N = ,
n h

et on substitue n par la partie entiere de cette valeur. On défini, finalement :

ao p ] C(a+ 1)

= 1 - 1 I IR R"‘_
dz® (z) hi>I(IJI+ ho ;( )g!p(a+1_€)f($ ), €

h = h > 0,

Dans la pratique, la limite en h est tronquée et une petite valeur de h (suffisamment petite) est
choisie pour obtenir une approximation.
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3 FODE models

There have been bottom-up generated models, arising from actual applications. For instance in
control or in the study of visco-elastic media [3]. There have also been top-down generated

models, trying to see what consequences can be obtained “fractionalizing” a given integer-order
ODE, with different success.

3.1 Some tools

The fractional derivatives are linear operators. This allows to preserve some interesting features
of the integer-order case (especially true in the case of the Caputo Derivative).

e “Fractional Picard Theorem”: existence and unicity of the solution for the ivp

dz
oos: — = f(t,x), rooe: o, D¢ = f(t,x), if f is continuous in ¢ and Lipschitz in x. (1)

dt

e For linear equations the superposition principle holds: linear combinations of solutions are
solutions.

e Laplace and Fourier Transform can be applied.
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Linear, homogeneous, equations with constant coefficients have as space of solutions a

vector space spanned by the eigenfunctions of the differential operator:
dx

ODE: I = M2z, robe: DT = MZ, Z(t) = zk: ci fr (1) Uk (2)

Similarly if we add a constant: the solution is the general solution of the homogeneous
equations plus a particular solution of the inhomogenous system:

dxr -
ODE: d—f = Mz + c, rooe: DT = MZ + ¢, f(t) :fp(t) + zk: Ck:fk(t)ﬁk;- (3)

Linear stability analysis of hyperbolic critical points is valid (first Lyapunov method [4]):
arg € [—m,m)
ODE: Vk,Re(Ak) <0 <= Vk, |arg()\k)\ > 7T/2 (4)
FODE: Vk, ]arg()\k)\ > OA7T/2, o < (0, 1) (5)
Nonlinear stability analysis by the second Lyapunov method exists (Lyapunov function[5]):

obe: Strong stability, ropr: “Mittag-Leffler” stability (implies strong stability).

Critical points correspond to constant solutions (Caputo):

A7+ . Y
ODE;d—f:f(f), voos: DT = f(£), (&) =0. (6)
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3.2 Drawbaks

Some properties, many of which are everyday tools, do not transfer to the fractional models.
e The Leibniz rule is not valid.

e The chain rule is not valid.

The eigenfunctions of fractional derivatives are not orthogonal (thus, no Fourier Series).

Higher order equations do not correspond necessarily to a system of unique order.

What is now the phase space?
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3.3 An example: a visco-elastic linear model

We consider a thin plate of surface s moving vertically in a fluid of density

p, with viscosity u, attached to a spring with constant k, subject to an
external force f(t). The behaviour of the displacement () is modeled
Lk by the fractionally damped equation:

¥+ a’D + kx = f(¢) (7)

with a some constant that depends on i, p and s.

This linear system can be (formally) solved by the Laplace transform,
depending on the initial conditions z(0), ©(0).

Let be £ (z(t)) =Y (p), L (f(t)) = F(p):

F(p) + (p+ap* )z(0) + (1 + ap*2)2(0)
p* +ap® + k |

Y(p) =

In the cases where 2/« is rational, with zero initial conditions, it can be formulated, by
congruent decomposition as a spectral problem for some basic operator °DP/4.
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Application: a = 3/2, z(0) = #(0) = 0.
Since we have zero initial conditions we have:
CD1/2(0D1/2$) — D22y ete.

We define auxiliary variables x; such that xo = x and express the equation as

2

D20 (t) = z1(1),
D21 (t) = zo(t),

§ DY 2xy(t) = x3(t), —  °DY27 = Mz + ().
°DY2g5(t) = —kxo(t) — axs(t) + f(1),

L 2,(0)=0, k=0,1,2,3

0O 1 0 0 T 0

0O 0 1 O 0
M — 3 f = ch , 17 —

0 0 0 1 T2 0

-k 0 0 —a T3 f(t)

We then diagonalize M, uncouple the equations representing ¥ in a basis of eigenvectors

(complex), solve and, finally, transform back to obtain z(t) = xo(¢).
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Or we can solve numerically: (the periodic limit cycle is not a solution)

261 ‘
oy S—
3+ 7 )
2605 I 7
27 |
26
| |
0 - > oo
_1 | 7
2.59
2 | 7
2585
_3 B 7
\ \ \ \ \ \ \ 2.58 ‘ ‘ ‘ ‘ ‘
-3 -2 -1 0 1 2 3 0.61 0.615 0.62 0.625 0.63 0.635 J

Figure 4: a =3, k=1, f(t) = 8cos(t)
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Second example: Bagley-Torvik Equation

It corresponds to the i.v.p. with Caputo fractional derivative of order 3/2 given by:
D2x(t) 4+ 2D3/2x(t) — 3z(t) = sin(t),
z(0) = 2/(0) = 0.

we can solve it, as the previous example, by congruent decomposition. The linear system is, in

this case:
DY2E(t) = MZ + ¢,

0O 1 0 O 0 0

0O 0 1 O 0
M — y f = xl , 8:

0O 0 0 1 T2 0

3 0 0 -2 T3 sin(t)

The eigenvalues of M are:

/2 /2
)\1:1, )\2:—1—\3/5, )\3,4:—1%—7\/7:&’6'\/57\/_.

In the “classical” case (o = 1) the solution is unbounded:

1, 1, 1 1
x(t) = 3¢ " 10° 0 cos(t) 5sm(t).

But for a = 3/2 we obtain a periodic curve as the limit.
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Figure 5: solution of the Bagley-Torvik Problem for a = 1 and for a = 3/2.
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3.4 An example: a visco-elastic nonlinear model

(eieciricai signal

The equation

strain gauge

i+ 7D — x + 2° = fycos(wt) (8)

is a “visco-elastic-damped” counterpart

Sinusoidal
exciting

force of the Duffing equation:

I'1 Roeam &4y —x+1° = focos(wt).  (9)
I
/ It corresponds to the same device but
X magnet
Ee | inmersed in a visco-elastic fluid. With a

) Jrigid frame

Cauchy problem z(0) = z¢, ©(0) = vy,
Figure 2.2.1. The magneto-elastic beam. ) . . . ]
it has a unique solution starting at time

to = 0.
Figure 6: Guckenheimer & Holmes [6], experimental

setup of the Duffing equation.
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Figure 7: The strange attractor of the integer-oder (left) and of the fractional-order Duffing
equation (right).

Property

Let us consider, for instance, the following initial value problem:

iy ( %x)t (t) — F(z) = focos(wt),
ZC(tl) =a, Zb(tl) =b.
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We use:

e C Fwa(r)
(thx)t () = F(nl—a) /t1 (th)O‘“_” ar

1 ’ aannx(tl‘FU)
= g d t:t 5 — t
F(n—a)/o (5 — o)o+in o [ 1+s, T=o0+1]

= ("“Dgsx), (t1 +s) = (D) (s),  [y(s) =x(t1 + s)] (11)

and we rewrite (10) as

y" 4+ v (°Dgyy). (s) — F(y) = focos(ws + ¢o), do = wty,

y(0) =a, y'(0)=0. 1

where the prime stands for derivation with respect to s. We obtain the same system as (10) but
at t = 0 and with an initial time-phase. If, for instance, t; = 27 /w, a = ¢ and b = vy, (12)

becomes (8).
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Conclusions

e All solutions can be reached from tog = 0 We may consider that any solution that starts at
a later time is, in fact, a solution that started at ty = 0 but with a phase.

e We still don’t know... We still don’t know how to prolong a given solution from the

“state” it is at a given time.

e But... Our Cauchy problem, for any solution, can be stated at time ¢y = 0 with three

values: g, vg and ¢g.
e 3-dim space We conclude that our phase space has three dimensions: R x R x [0, 27).

e 2-dim in practice for many purposes Just as for a noautonomous “classical” system. Since
the initial phase is a constant, it is not relevant for many aspects when analysing the

solutions.

e So... What is the phase space, in practice, for a fractional system? The space of initial

conditions or the space of conditions to prolong a solutions?

See for instance [7, 8].
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Merci de votre attention !



